
Export Module Interface for Adobe Photoshop™

©1990 Thomas Knoll

Introduction

This document describes version 3 of Adobe Photoshop’s export module interface. Plug-ins based on
the following specifications should contain a 3 in their ‘PiMI’ resource.

The code resource and file type for export modules is ‘8BEM’.

Record Structure

The stuff parameter contains a pointer to a structure of the following type:

ExportRecord = RECORD
serialNumber: LONGINT;
abortProc: ProcPtr;
progressProc: ProcPtr;
maxData: LONGINT;
imageMode: INTEGER;
imageSize: Point;
depth: INTEGER;
planes: INTEGER;
imageHRes: Fixed;
imageVRes: Fixed;
redLUT: PACKED ARRAY [0..255] OF CHAR;
greenLUT: PACKED ARRAY [0..255] OF CHAR;
blueLUT: PACKED ARRAY [0..255] OF CHAR;
theRect: Rect;
loPlane: INTEGER;
hiPlane: INTEGER;
data: Ptr;
rowBytes: LONGINT;
filename: Str255;
vRefNum: INTEGER;
dirty: BOOLEAN;
selectBBox: Rect;
END;

Calling Order

When the user invokes the plug-in by selecting its name from the Export submenu, Photoshop loads the
plug-in’s resource into memory and calls it with the following sequence of selector values (see the
header file for their actual values):

(1) exportSelectorPrepare

This allows the plug-in to adjust Photoshop’s memory allocation algorithm. Before this call, Photoshop
sets the maxData field to the maximum number of bytes it would be able to free up. If plug-in module
then has the option of reducing this number during this call. Reducing the number can speed up
operation, since freeing up the maximum amount of memory requires Photoshop to move all of the
image data for any currently open images out of of RAM and into its virtual memory file.

If the plug-in knows that it memory requirements will be limited (if it can process the image data in
strips, or if the maximum resolution image it can process is small), it should reduce maxData to its
actual requirements during this call. This will allow small exports to be performed entirely in RAM.

If, as is often the case, the plug-in only needs a small amount memory, but will operate faster if given
more, a tradeoff has to be made. One solution is to divide the maxData field by 2, thus allocating half
the memory to Photoshop and half to the plug-in.

(2) exportSelectorStart

Most plug-ins will display their dialog box, if any, during this call.

During this call, the plug-in should set theRect and the loPlane and hiPlane fields to let Photoshop
know what area of the image it wishes to process first.

The total number of bytes requested should be less than maxData. If the image is larger than maxData,
the plug-in must process the image in strips. Horizontal strips are most efficient, but any pattern is
allowed (even overlapping ones).

(3) exportSelectorContinue

During this routine, the plug-in should process the image data pointed to by the data field.
It should then adjust theRect and the loPlane and hiPlane fields to let Photoshop know what area of the
image it wishes to process next. If the entire image has been processed, it should set theRect to an
empty rectangle.

The requested image data is pointed to by the data field. If more than one plane has been requested
(loPlane ≠ hiPlane), the data is interleaved. The offset from one row to the next is indicated by the
rowBytes field. This is not necessarily equal to the width of theRect—there may be additional pad bytes
at the end of each row.

(4) exportSelectorFinish

This call allows the plug-in to clean up after an image export. This call is made if and only if the
exportSelectorStart routine returns without error (even if the exportSelectorContinue routine returns an
error).

If Photoshop detects a command-period between calls to the exportSelectorContinue routine, it will call
the exportSelectorFinish routine (be careful here, since normally the plug-in would be expecting
another exportSelectorContinue call).

Record Fields

(1) serialNumber

Contains Adobe Photoshop’s serial number. Plug-in modules can use this value for copy protection, if
desired.

(2) abortProc

Contains a pointer to a function with the following Pascal calling conventions:

FUNCTION TestAbort: BOOLEAN;

The plug-in may call this function several times a second during long operations to allow the user to
abort the operation. If the function returns TRUE, the operations should be aborted. As a side effect,
this changes to cursor to a watch, and moves the watch hands periodically.

(3) progressProc

Contains a pointer to a procedure with the following Pascal calling conventions:

PROCEDURE UpdateProgress (done, total: LONGINT);

The plug-in may call this two-argument procedure periodically to update a progress indicator. The first
parameter is the number of operations completed; the second is the total number of operations.

This procedure should only be called during the actual main operation of the plug-in, not during long
operations during the preliminary user interface.

Photoshop automatically suppresses display of the progress graph during short operations.

(4) maxData

Photoshop initializes this field to the maximum of number of bytes it can free up. The plug-in may
reduce this value during the exportSelectorPrepare routine. The exportSelectorContinue routine should
process the image in strips no larger than maxData, less the size of any large tables or scratch areas it
has allocated.

(5) imageMode

The mode of the image being exported (Gray Scale, RGB Color, etc.). See the header file for possible
values. The exportSelectorStart should return an exportBadMode error if it is unable to process this
mode of image.

(6) imageSize

The image’s width (imageSize.h) and height (imageSize.v) in pixels.

(7) depth

The image’s resolution in bits per sample. The only possible settings are 1 for bitmap mode images,
and 8 for all other modes.

(8) planes

The number of channels in the image. For example, if an RGB image without alpha channels is being
processed, this field will be set to 3.

(9) imageHRes and imageVRes

The image’s horizontal and vertical resolution in terms of pixels per inch. These are fixed point
numbers (16 binary digits).

(10) redLUT, greenLUT and blueLUT

If an indexed color mode image is being processed, these fields will contain its color table.

(11) theRect

The exportSelectorStart and exportSelectorContinue routines should set this field to request an area of
the image for processing. Should be set to an empty rectangle when complete.

(12) loPlane and hiPlane

The exportSelectorStart and exportSelectorContinue routines should set these fields to the first and last
planes to process next.

(13) data

This field contains a pointer to the requested image data. If more than one plane has been requested
(loPlane ≠ hiPlane), the data is interleaved.

(14) rowBytes

The offset between rows for the requested image data.

(15) filename

The name of the file the image was read from. File exporting modules should use this field as the
default name for saving.

(16) vRefNum

The volume reference number of the file the image was read from.

(17) dirty

File exporting modules should clear this field to prevent to the user being prompted to save any unsaved
changes when the image is eventually closed.

(18) selectBBox

The bounding box of the current selection. If there is no current selection, this is an empty rectangle.

